Drosophila NK-homeobox genes (NK-1, NK-2, NK-3, and NK-4 DNA clones/chromosome locations of genes) YONGSOK KIM AND MARSHALL NIRENBERG Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Building 36, Room 1C-06, Bethesda, MD 20892 Contributed by Marshall Nirenberg, July 6, 1989 ABSTRACT Four Drosophila melanogaster homeobox genes were found by screening a genomic DNA library with oligodeoxynucleotides that correspond to a conserved amino acid sequence that is part of the putative site of homeobox proteins that recognizes nucleotide sequences in DNA. The amino acid sequences of NK-2, NK-3, and NK-4 homeoboxes are more closely related to one another (59–66% homology) than they are to other Drosophila homeoboxes (28–54% homology), whereas the homeobox of NK-1 is most closely related, in order of decreasing homology, to muscle segment homeobox, zerknüllt-1, NK-3, and distal-less homeoboxes. Three of the genes, NK-1, NK-3, and NK-4, comprise a cluster of homeobox genes located in the 93E1–5 region of the right arm of the third chromosome, whereas the fourth homeobox gene, NK-2, is located in the 1C1–5 region of the X chromosome. Homeobox genes encode DNA binding proteins that regulate gene expression during development or in the adult (1-4). In most cases, the similarity between different kinds of homeobox proteins extends only over a segment of the protein that consists of 60-61 amino acid residues, the homeodomain, which is thought to be the portion of the protein that recognizes nucleotide sequences in DNA. Homeobox genes are particularly well expressed in nervous system, and the homeobox family of genes encodes the largest set of proteins that regulate gene expression in the nervous system that has been identified thus far (5-9). In this report, we describe four newly discovered, related *Drosophila* homeobox genes that were detected with oligonucleotide probes corresponding to an amino acid sequence that is thought to be part of the nucleotide sequence recognition site of homeobox proteins. ## METHODS AND MATERIALS Oligodeoxynucleotides. An Applied Biosystems DNA synthesizer 380B was used to synthesize oligodeoxynucleotides. Oligonucleotides with the trityl groups attached were purified by OPC column chromatography and trityl groups then were removed as described by Applied Biosystems. [γ^{-32} P]ATP with a specific activity of 6000 Ci/mmol (1 Ci = 37 GBq) (New England Nuclear) was used for phosphorylation of oligodeoxynucleotides catalyzed by T4 polynucleotide kinase (10). **Detection and Cloning of Homeobox Genes.** A *Drosophila melanogaster* genomic DNA library in Charon 4A (11) was obtained from the American Type Culture Collection. Recombinant phage [48,000 plaque-forming units (pfu)] and 2×10^9 *Escherichia coli* KH802 cells were plated in Petri dishes (150 mm) at a concentration of 12,000 pfu per dish. Four nitrocellulose replica filter plaque lifts were obtained from each Petri dish, and each filter was hybridized with a different [32 P]-oligodeoxynucleotide preparation [16 -64 oligodeoxynucleotide species per preparation; $^{1.5} \times 10^6$ cpm/ml; 120 -150 The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. fmol/ml (the sum of all species of oligodeoxynucleotides)] at 37°C overnight and washed with a solution containing tetramethylammonium chloride at 53°C or 50°C for 30 min for 17-mers or 16-mers, respectively, as described by Wood *et al.* (12). DNA Sequencing.* Cloned genomic DNA fragments cleaved by restriction enzymes were subcloned into Bluescript pKS+. Both strands of the homeobox regions of the following DNA fragments were sequenced by the dideoxynucleotide chaintermination method (13) using M13 universal primers or specific oligodeoxynucleotide primers and Sequenase 2 (United States Biochemical): NK-1, 1.4-kilobase (kb) EcoRI/Pst I DNA fragment; NK-2, 1.2-kb EcoRI/Pst I DNA fragment; NK-3, 0.7-kb Pst I DNA fragment; NK-4, 0.4-kb and 2.3-kb upstream HindIII DNA fragments. dITP was used to reduce compression of DNA bands. Locations of Genes on Chromosomes. Salivary gland polytene chromosomes were hybridized with *Eco*RI-cleaved genomic DNA fragments that contained the appropriate homeobox region and had incorporated biotin-16 dUMP in place of some dTMP residues as described (14). Detek 1-HRP kits (Enzo Biochemicals) and the protocol supplied by the manufacturer were used. ## RESULTS AND DISCUSSION Detection of Homeobox Genes. The Drosophila genomic DNA library of Maniatis et al. (11) in Charon 4A was screened for recombinants corresponding to homeobox genes with five [32P]oligodeoxynucleotide probe preparations designed to hybridize to highly conserved homeobox nucleotide sequences. The oligonucleotide preparations were 16 or 17 nucleotides long and each consisted of multiple species of oligodeoxynucleotides (described in the legend to Fig. 2). Replica filters were prepared and each filter was hybridized to a different [32P]oligodeoxynucleotide preparation. The filters were washed under high-stringency conditions with a solution that contained tetramethylammonium chloride, which selectively binds to A·T base pairs and raises the melting temperature (t_m) of A·T base pairs to that of G·C base pairs (12). The t_m of each [32P]oligodeoxynucleotide-DNA duplex then was dependent on the number of contiguous base pairs formed but was not affected by the proportion of G·C vs. A·T base pairs (12). Consequently, all species of 17-mer oligodeoxynucleotides hybridized to DNA were washed at the same temperature (53°C) for the stringent wash, and all 16-mers were washed at 50°C. Of the 48,000 phage plaques that were screened, ≈ 200 clones were obtained that exhibited a positive autoradiographic signal with one of the five [32 P]oligonucleotide probe preparations, and 7 recombinant clones were obtained that gave positive signals with two or more probe preparations. Many of the 200 clones that were detected with only one ^{*}The sequences reported in this paper for NK-1 to NK-4 have been deposited in the GenBank data base (accession nos. M27289. M27290, M27291, M27292, respectively). probe were cloned, but they were not studied further. The 7 clones that were detected with two or more ³²P-labeled probes were characterized by restriction site analysis and the nucleotide sequences of the homeobox regions of some of the clones were determined by using unlabeled probes as sequencing primers. Five of the 7 clones were found to be previously unknown homeobox genes. The 2 remaining clones correspond to known homeobox genes; 1 clone contains zerknüllt-1 (zen-1) and zen-2 DNA (15), and the other clone corresponds to either en or inv (16) (data not shown). Characterization of Homeobox Genes. In Fig. 1 are shown partial restriction site maps of the homeobox genes NK-1, NK-2, NK-3, and NK-4, the locations of homeobox regions within the DNA inserts, and the direction of transcription. The approximate chain lengths of the cloned NK-1 and NK-2 genomic DNA fragments are 15.0 and 14.1 kb, respectively. Three of the 7 clones detected with two or more probes correspond to NK-3. Clone 6 is a 14.7-kb DNA fragment that contains the NK-3 homeobox sequence. Clones 3 and 9 contain similar or identical DNA inserts (14.6 kb) that overlap clone 6 and contain both NK-3 and NK-4 homeobox sequences separated by ≈7.8 kb. The restriction site map of NK-3 and NK-4 shown is derived from data obtained from clones 6, 3, and 9. Subcloned EcoRI DNA fragments from clone 3 were used to determine NK-3 and NK-4 nucleotide sequences. Partial Nucleotide Sequence of NK-1. The sequence of an 811-nucleotide portion of the NK-1 gene is shown in Fig. 2. The first 198 nucleotides correspond to the 3' portion of an istron. Another intron, 217 nucleotides long, was found within the homeobox, between codons for homeobox amino acid residues 44 (glutamine) and 45 (valine). The intron-exon structure of the NK-1 gene was confirmed by sequencing NK-1 cDNA clones (to be described elsewhere). Three other Drosophila homeobox genes, labial (lab) (19, 20), abdominal-B (Abd-B) (21), and distal-less (Dll) (22) [Brista (23)] have introns at precisely the same location within the homeobox as NK-1. The intron within the NK-1 homeobox contains a nucleotide sequence for antennapedia (Antp) protein binding (18) and one or two binding sites for zeste protein [the onsensus nucleotide sequence for zeste is TGAGYG (Y, pyrimidine) (17)]. The amino acid sequence of the initial portion of the first NK-1 exon shown in Fig. 2 is highly acidic—i.e., 12 of the first 26 amino acid residues shown are aspartyl or glutamyl residues. Twenty-five percent of the amino acid residues before the homeobox are glycine residues, which include 7 consecutive glycine residues, and 17% are serine or threonine residues. Fig. 1. Partial restriction maps of NK-1, NK-2, NK-3, and NK-4 cloned genomic DNA fragments. Solid boxes represent homeoboxes and are not drawn to scale. Arrows indicate direction of transcription. B, BamHI; H, HindIII; P, Pst I; R, EcoRI; (R), EcoRI cloning site created by ligation of an EcoRI linker to genomic DNA. Characterization of NK-2. The nucleotide sequence of the homeobox region of the NK-2 gene is shown in Fig. 3. The deduced amino acid sequence before the homeobox contains repetitive asparagine residues and a highly acidic region consisting of 14 aspartyl or glutamyl residues in a 31-amino acid segment (45% acidic amino acid residues). Twenty-five percent of the amino acid residues before the homeobox are glycine plus alanine. The carboxyl-terminal 30 amino acid residues of NK-2 are rich in histidine (20%), proline (17%), and glycine (17%). A 168-nucleotide 3'-untranslated region also is shown. Characterization of NK-3 and NK-4. The nucleotide sequence and deduced amino acid sequence of part of the NK-3 homeobox gene are shown in Fig. 4. The initial part of the sequence consists of part of an exon that encodes 54 amino acids (17% alanine, 19% serine and threonine, and 9% asparagine), which is followed by a short, 119-nucleotide intron within the 26th codon before the homeobox. The intron-exon structure of the NK-3 gene was confirmed by sequencing NK-3 cDNA clones (K. Webber, Y.K., and M.N., unpublished data). The initial portion of the second Fig. 2. Nucleotide sequence and deduced amino acid sequence of the homeobox region of the NK-1 gene. Deoxynucleotide and amino acid residues are numbered on the right; 1 corresponds to the first deoxynucleotide or amino acid residue in the homeobox, which is enclosed in a large box. The acidic amino acid region is indicated by boxed Asp or Glu residues. Repetitive Gly residues before the homeobox also are enclosed in a box. The 1st and 2nd boxed nucleotide sequences in intron 2 are possible sites for binding of zeste protein to DNA (17). The 3rd site, ANNNNCATTA, is an Antp protein binding site (18). Arrowheads represent intron-exon junctions. Nucleotide 12 in an NK-1 genomic DNA clone was C, whereas the corresponding nucleotide residue found in an NK-1 cDNA clone was T. All oligodeoxynucleotide probes are complementary to the DNA strand shown; probe sequences, starting from the 5'-terminal nucleotide residues are as follows: -, probe 121, 24 species of 17-mers, (-)TTYTGRAACCA(T/A/G)TARAA; --, probe 125, 48 species of 17-mers, (-)AACCA(T/G/A)ATYTTNACYTG; ---, probe 126, 64 species of 17-mers, (-)AAYTCYTTYTCNAGYTC; --, probe 127, 64 species of 17-mers, (-)-C(T/G)RTTYTCRTTRAAYTC; · · · probe 130, 16 species of 16-mers, (-)A(C/G)T(C/G)(C/G)T(T/ G)CTCCAGCTC. Y, pyrimidine; R, purine. exon before the homeobox consists of 35% serine and 19% proline residues. The 54 amino acid residues after the homeobox are rich in alanyl and glycyl residues (22%) as well as leucyl residues (11%). In Fig. 5 is shown the nucleotide sequence of part of the NK-4 gene. The initial part of the sequence consists of part of an intron, which is followed by an exon that contains the homeobox domain. The carboxyl-terminal region of the deduced NK-4 protein contains repetitive glutamine residues (M or opa repeats and a CAX repeat in the corresponding DNA). Locations of Genes on Chromosomes. The cytological locations of the NK-1, NK-2, NK-3, and NK-4 genes in Drosophila third-instar larvae salivary gland polytene chromosomes are shown in Fig. 6. Unexpectedly, NK-1, NK-3, and NK-4 genes were found to reside in neighboring chromosomal bands in the right arm of chromosome 3. The NK-3 and NK-4 genes reside at 93E1-3, and the NK-1 gene resides at 93E3-5. When two probes, one for NK-1 and one for NK-3, were added to the same in situ hybridization reaction mixture, two labeled chromosomal bands were obtained at 93E1-5 that were separated only slightly. However, the NK-2 gene resides in the 1C1-5 region of the X chromosome. In Fig. 6B, the relative positions of the NK-3/NK-4 and NK-1 genes are shown correlated with the chromosomal bands in the 93E region of chromosome 3 in Bridges' revised map of chromosomal bands (24). These results show that NK-1, NK-3, and NK-4 comprise a cluster of homeobox genes. Either NK-1, NK-3, or NK-4 genes may be the same as torso-like, a maternal effect gene that resides at 93E and is one of the ensemble of genes that determine the anterior-posterior pattern of the embryo (2). The torso-like gene and four other genes are required for the formation of both the anterior and posterior terminal, unsegmented portions of the embryo (the acron and telson) (2). Another candidate is paired gene 9, which is thought to contain repetitive alternating codons for histidine and proline termed a paired repeat [also found in paired (25) and bicoid | ACG
Thr | GCC
Ala | CAT
His | GCC
Ala | CTA
Leu | CAC
His | AAC
Asn | AAC
Asn | AAT
Asn | AAT
Asn | AAT
Asc | ACG
Thr | ACA
Thr | AAC
Asn | AAC
Asn | -160
-54 | |------------|-------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------| | AAT
Asn | AAC
Asn | CAC
His | AGC
Ser | CTG
Leu | AAG
Lys | GCC
Ala | GAG
Glu | GGG
Gly | ATC
Ile | AAC
Asn | GGA
Gly | GCA
Ala | GGC
Gly | AGT
Ser | -115
-39 | | GGT
Gly | CAC
His | GAC
Asp | GAT | AGC
Ser | CTC
Leu | AAC
Asn | GAA
Glu | GAT
Asp | GGC
Gly | ATC
Ile | GAG
Glu | GAG
Glu | GAT | ATC
Ile | -70
-24 | | Asp | GAC
Asp | GTG
Val | GAC
Asp | GAC
Asp | GCC
Ala | GAC
Asp | Gly | AGT
Ser | GGC
Gly | GGC
Gly | GGG
Gly | GAT
Asp | GCA
Ala | AAT
Asn | -25
-9 | | GGA | nHI
TCC
Ser | GAC
Asp | GGT
Gly | CTG
Leu | CCA
Pro | AAT
Asn | AAG | AAA | CGG
Arg | AAG
Lys | CGA
Arg | CGA
Arg | GTC
Val | CTG
Leu | 21
7 | | | ACC
Thr | | | | | | | | | | | | | | 66.
22 | | | CGT
Arg | | | | | | | | | | | | | | 111
37 | | | CGC
Arg | | | | | | | | | | | | | | 156
52 | | CGC | TAC
Tyr | AAG
Lys | ACG
Thr | AAG
Lys | CGG
<u>A⊭g</u> | GCG
Ala | CAA
Gln | AAC
Asn | GAG
Glu | AAG
Lys | GGC
Gly | TAC
Tyr | GAG
Glu | GGT
Gly | 201
67 | | | CCT | | | | | | | | | | | | | | 246
82 | | | GCC | | | | | | | | CCG | TTCC | AGTT | CTGG | TGAG | GAAC | 291
90 | | GGA | AAGC | CCTG | CTTG | GGCG | ATAG | TTCC | AAAC' | TGGG | AGCC | GACT | GCGT | CTCC | GTGT | CATC | 341 | | AGC | CACC | GCCA | .ccgc | CATG | _ | ATGC | csco | GCCC | ATCA | CTTG | GTTG | CCCT | AAAT | GGAG | 400 | | CGG | CCGC | CTAT | CAAC | ATGC | | | | | | | | | | | 440 | Fig. 3. Nucleotide sequence and deduced amino acid sequence of the homeobox region of NK-2 genomic DNA. The homeobox domain is enclosed in a large box. Repetitive Asn residues are enclosed in a box. The acidic amino acids enclosed in boxes before the homeodomain comprise an acidic region of NK-2 protein. (25) genes] and a homeobox, which resides at 93E1-2 and was cloned by Frigerio et al. (25). Elsewhere, we will show that NK-1 contains a paired repeat (unpublished data); however, it is not known whether NK-1 is the same as paired gene 9. It should be noted that binding sites for polycomb protein have been detected at 93E1-4 (27). One of several candidates for the NK-2 gene is twisted, discovered by Demerec et al. (28), which is located between 1C-5 and 2C-10. The abdomens of adult tw mutants, viewed from behind, are rotated ≈30°C clockwise. However, further work is needed for the identification of NK-1, NK-2, NK-3, and NK-4 genes. Homeobox Homology. The deduced amino acid sequences of the homeobox domains of NK-1, NK-2, NK-3, and NK-4 are shown in Fig. 7 and are compared with the 23 Drosophila homeobox sequences that have been reported thus far. NK-2, NK-3, and NK-4 homeoboxes are more closely related to one another (59-66% homology) than they are to other Drosophila homeoboxes. The maximum homology to a previously reported homeobox is to muscle segment homeobox (msh) (29) (54% homology). In order of decreasing homology, the homeobox of NK-1 is most closely related to msh, zen-1, NK-3 and Dll homeoboxes. NK-1, lab, Dll, and Abd-B genes may have originated from a common precursor because each gene contains an intron between the codons for the 44th and 45th homeobox amino acid residues. It has been suggested that homeobox proteins bind to DNA via a helix-turn-helix motif in the homeodomain and that amino acid residues 42, 43, and 47 in the third α -helix of the homeodomain interact with nucleotide residues in the major groove of DNA and determine, at least in part, the nucleotide sequence recognized (29-31). Since NK-1, lab, Abd-B, and Dll genes each contain an intron between the codons for the 44th and 45th homeobox amino acid residues, the part of each gene that is thought to encode the DNA recognition site of the corre- | Pst | 1 | | | | | | | | | | | | | | | |--------|-------------------|---------|---------|----------|-------|---------------|-------|---------|-------------------------------|------------------|-------|------|-------|---------|------| | CTG. | ĊAG | TAT | TAT | GCG | GCG | GCG | ATG | GAC | AAC | TAA | AAC | CAC | CAT | CAC | -31€ | | Leu | Gln | Tyr | Tyr | Ala | Ala | Aia | Met | Asp | Asn | Asn | Asn | Hi5 | His | His | -6€ | | | | | | | | | | | | | | | | | | | CAG | GCA | ACG | GGC | ACA | TCG | AAC | TCC | AGT | GCC | GCC | GAC | TAC | ATG | CAG | -271 | | Gln | Ala | Thr | Glv | Thr | Ser | Asn | Ser | Ser | Ala | Ala | Asp | Tyr | Met | Gln | -51 | | J | | • • • • | 1 | | | | nHI | | | | | | | | | | ccc | ΔΔΔ | TTG | GCC | TAT | TTT | GGA | Tee | ACC | CTC | GCT | GCT | CCT | TTG | GAC | -226 | | Ara | LVS | Leu | Ala | Tyr | Phe | Glv | Ser | Thr | Leu | Ala | Ala | Pro | Leu | Asp | -51 | | | | | | | | | | | | | | | | | | | ATC. | NC N | CCC | TCC | 100 | 100 | 244 | CAT | TCC | G [▼] G ^c | raagr | CAACT | GCAG | GAA | ATTA | -177 | | Mot | non | 0.50 | Cue | Thr | Ser | Acc | Asp | Ser | A | | | | | | -26 | | net | AIQ | nig | Cys | 1111 | 261 | 11311 | 1150 | 001 | •• | | | | | | | | 1000 | ~ ~ ~ m | TO NO | CTC | PAAT. | CAC | гстс | | DAAC | эстас | יבדיי | rTCA1 | TGGG | CCTT | TTGT | -118 | | | | | | | | | | | | | | | | | | | B.T.B. | ~ (~ x ~) | om a m | ooma. | A CITITE | macc. | тавт | TTTC | استامات | -ACA: | .V _{AC} | TGC | GAC | TCA | CCA | -64 | | MIM | 304+1 | OIAII | 3 (1 M | MOTI | 1.00 | , nn i | | | . / 1 () 1 1 | en | Cys | Acn | Ser | Pro | -,: | | | | | | | | | | | | эþ | Cy S | asp | 501 | | | | 000 | | merc | 100 | 200 | TOC | 000 | TCG | GAG | TOG | ees | СТА | TCC | CAC | GAC | -19 | | Litte | CUA | 116 | AGC | AG: | 2 | Dec | Ser | Clu | CAF | 0.00 | Lou | Cor | Hic | Asn | | | Pro | Pro | ьеп | Ser | ser | | | ser | 91.1 | 3e: | - F10 | пец | 361 | 111.3 | 1150 | 1 | | | | | | | | +1 | | 000 | maa | 000 | 000 | ~~~ | mm.c | NCC | 27 | | GGC | AGT | GGA | TTG | AGC | CGC | AAG | AAG | ناوان | TCG | CGI | 000 | 3.1- | 110 | Cox | , a | | Gly | Ser | Gly | Leu | Ser | Arg | Lys | Lys | Arg | Ser | Arg | Ala | нта | rne | 261 | 1 | | | | | | | | | | | | | | | | 200 | 7.2 | | CAC | GCC | CAG | GTC | TTC | GAG | TTG | GAG | CGC | CGC | TTT | GCC | CAA | CAG | 1000 | | | His | Ala | Gln | Val | Phe | Glu | Leu | Glu | Arg | Arg | Phe | Aia | GIn | Gin | Arg | 2 " | | | | | | | | | | | | | | | | 000 | 117 | | TAC | TTG | TCC | GGT | CCG | GAA | CGC | AGC | GAG | ATG | GCC | AAG | AGC | CIG | الالالا | 30 | | Tyr | Leu | Ser | Gly | Pro | Glu | Arg | Ser | Glu | Met | Ala | Lys | Ser | Leu | Arg | 3. | | | | | | | | | | | | | | | | | 16. | | CTG | ACG | GAG | ACC | CAG | GTG | AAG | ATC | TGG | TTC | CAA | AAC | CGC | CGC | TAU | 10. | | Leu | Thr | Glu | Thr | Gln | . Val | Lys | Ile | Trp | Phe | Gln | Asn | Arg | Arg | Tyr | 1 | | 1 | | | | | | | | | | _ | | | | | ر ر | | AAG | ACC | AAG | CGC | AAG | CAG | ATC | CAG | CAG | CAC | GAG | GCC | GCC | CTT | TTG | 2 | | Lys | Thr | Lys | Arg | Lys | Gln | Ile | Gln | Gln | His | Glu | Ala | Ala | Leu | Lev | , , | | | - | | | | - | | | | | | | | | | | | GGT | GCC | AGC | AAG | AGG | GTT | CCC | GTC | CAA | GTC | TTG | GTG | CGA | GAG | GAT | | | Glv | Ala | Ser | Lys | Arc | Val | Pro | Val | Gln | Val | Leu | Val | Arg | Glu | Asp | 94 | | | | | | | | | | | | | | | | | | | GGC | AGC | ACC | ACC | TAC | GCT | CAC | ATG | GCT | GCT | CCC | GGT | GCT | GGA | CAC | | | Glv | Ser | Thr | Thr | Tyr | Ala | His | Met | Ala | Ala | Pro | Gly | Ala | Gly | His | , go | | | | | | | | | | | | | | | Ps | t I | | | GGC | CTC | GAT | ccc | GCC | CTG | ATO | : AAC | : ATC | TAC | CGC | CAT | CAG | : CTG | CAC | 343 | | Glv | Leu | Asp | Pro | Ala | Leu | Il ϵ | Asr | ille | Tyr | Arg | His | Gln | Lev | Glr | 114 | | | | | | | | | | | | | | | | | | FIG. 4. Nucleotide sequence and deduced amino acid sequence of the homeobox region of the NK-3 gene. The homeobox is enclosed in a box. Arrowheads represent exon-intron junctions. sponding protein is interrupted by an intron. Further work is needed to determine whether the specificity of DNA recognition by NK-1 protein is altered by alternative splicing. Amino acid replacements that alter the 42nd or 43rd amino acid residues in the homeobox are of special interest since they may determine part of the nucleotide sequence that is recognized by the homeobox protein. The 42nd homeobox amino acid residues of NK-2 and NK-4 are proline and alanine, respectively. The unspliced form of Saccharomyces cerevisuae mating-type factor a-1 has proline at this site (29); however, neither proline nor alanine has been found at this site in any metazoan homeobox protein. A proline residue would not be expected to be part of an α -helix, unlike alanine or glutamic acid residues, which promote α -helix formation. The 43rd homeobox amino acid residue of NK-1, NK-2, NK-3, and NK-4 is threonine; however, the only other homeobox proteins that contain threonine at this site are msh, Dll, lab, and to in Drosophila and Hox 1.6 and Hox 7.1 in the mouse. The amino acid sequences of most or all of these homeobox domains share other unusual features [for example, see alanine (11th amino acid residue), lysine or arginine (19th residue), glutamic acid (30th residue), tyrosine (54th residue), and serine or threonine (56th residue)]. The presence of the same or similar unusual amino acid replacements in most or all of these homeodomains provides additional evidence that the newly discovered homeobox genes are related to one another. The combined use of probes 121 and 125, which correspond to the overlapping hexapeptides shown at the top of Fig. 7, should detect only those homeobox genes that encode the amino acid sequence Gln-Val-Lys-Ile-Trp-Phe-Gln-Asn as residues 44–51 of the third α-helix of the homeodomain, which is part of the putative nucleotide sequence recognition site of homeobox proteins. Only zen-1, zen-2, lab, and cad, in addition to the homeobox genes described in this report would be expected to give positive autoradiographic signals with both 121 and 125 probes. It is uncertain whether msh, Dll, and Abd-B genes would give positive signals with 121 and 125 probes because both Dll and Abd-B genes contain introns | | TAAT. | ATGAT | rccta | AACT | 'AGTC | ATOD: | GTCC | CTTA | ACG/ | GTT | CAATA | TAT | rata: | ATT | -150 | |------|-------|-----------|-------|------|-------|-------|-------|------|-------|------|-------|---------|-------|-------|------| | | | | TOTA | | | | | | | | | | | | -94 | | | | | | | | | | | | | | Asp | Asn | Ser | -32 | | 15.0 | ana | ACC | TCC | TCG | CGT | TCC | GAG | CTG | CGA | AAA | AAC | AGC | ATC | AGT | -49 | | | | | Ser | | | | | | | | | | | | -17 | | 12.5 | AAC | AGC | AAT | CCG | agg | AGC | AAC | AGT | GGT | TCC | ACC | AAG | CCC | CGG | ~ 4 | | | | | Asn | | | | | | | | | | | | ~2 | | - 1 | + } | | | | | | | | | | | | | | | | | | | AAG | | | | | | | | | | | | 42 | | 32-1 | Lys | Arg | Lys | Pro | Arg | Val | Leu | Phe | Ser | Gln | Ala | Gln | Val | Leu | 14 | | CAC | cro | GAG | TGT | cac | TTT | CGA | ctc | AAA | AAG | TAT | CTG | ACG | GGT | GCG | 87 | | | | | Cys | | | | | | | | | | | | 29 | | | | | • | | | - | Hin | dill | • | • | | | | | | | | | | | | | | AAG | CTT | | | | | | CAA | | | 71 u | Arg | G1u | Ile | I1e | Ala | Gln | Lys | Leu | Asn | Leu | Ser | Ala | Thr | Gln. | 44 | | 1 | | * (7) (7) | maa | mm c | 010 | N N T | | ccc | ~ x c | | mac | 222 | CCT | GGC | 177 | | | | | Trp | | | | | | | | | | | | 59 | | 1 | | | | | | 7751. | iii g | | . y . | .,,, | | | | |] | | | | | TGC | | | | | | | | | | | | 222 | | Asp | Ile | Asp | Cys | Glu | Gly | Ile | Ala | Lys | His | Leu | Lys | Leu | Lys | Ser | 74 | | | 000 | cm c | GAC | moc. | 000 | 1 C = | m c m | OT C | 000 | ccc | 200 | N TO TO | 000 | n a c | 267 | | | | | Asp | | | | | | | | | | | | 89 | | 914 | PIO | Le: u | Аэр | ser | FIO | 1111 | 361 | Leu | FIO | 110 | 110 | 116 | 110 | 71511 | Ų, | | CAC | GTG | ATG | TGG | ccc | CCA | ACC | ATG | CAG | CAA | TCG | CAG | CAG | CAG | CAG | 312 | | His | Va1 | Met | Trp | Pro | Pro | Thr | Met | Gln | Gln | Ser | Gln | Gln | Gln | Gln | 104 | | | | | | | | | | | | | | | m.c.c | | 358 | | | | | | | | | | | | | | | 700 | ACAT | 116 | | 9.5 | HIS | HIS | Ala | GTU | GIN | GIN | GID | met | Gin | HIS | met | | | | 110 | | 7. | GCAG | GACG | AAGG | ATTC | GAGT | CTCT | AATT | TATT | GCAG | ТТТС | AAGA | AGAA | TACA | TGTT | 417 | | TA | GTCT | AAGG | AAAC | GCTC | ATAG | TTCT | AGTT | CTTT | STTT | | | | | | 456 | Fig. 5. Nucleotide sequence and deduced amino acid sequence of the homeobox region of the NK-4 gene. The homeobox is enclosed in a box. A CAX repeat is underlined, which encodes repetitive Gln residues. Arrowhead represents a potential splice acceptor site. FIG. 6. (A) In situ hybridization of genomic DNA probes for NK-1 (first panel), NK-4 (second panel), NK-3 (third panel), NK-1 and NK-3 (fourth panel), and NK-2 (fifth panel) to Drosophila polytene chromosomes. A-F and vertical markers represent chromosomal band subdivisions in the 93 A-F region of the right arm of the third chromosome. The DNA probes hybridize to the following locations: NK-1, 93E3-5; NK-4, 93E1-3; NK-3, 93E1-3; NK-1 and NK-3, 93E1-5; NK-2, 1C1-5. Arrowheads indicate labeled chromosomal bands. (B) The approximate locations of the NK-3, NK-4, and NK-1 genes are indicated on Bridges' revised map of chromosomal bands (24). of unknown sequence between codons for the 44th and 45th homeobox amino acid residues, and it is not known whether the *msh* gene contains an intron at this site. Probe 125 hybridizes to the NK-1 gene because the 3'-terminal nucleotide sequences of both exon 1 and intron 2 are CAG. Both zen-1 and zen-2 genomic DNA were detected and cloned with probes 121 and 125 in addition to NK-1, NK-2, NK-3, and NK-4, but *lab* and *cad* genes were not detected. The *Drosophila* genome has been screened many times with DNA fragments containing homeobox sequences as probes; however, NK-1, NK-2, NK-3, and NK-4 homeodomains may not have been detected because their overall homology to other *Drosophila* homeodomains is relatively low. The use of oligodeoxynucleotide probes that correspond to other amino acid sequences in homeobox proteins should provide a means of detecting additional sets of homeobox genes that have some structural features in common. - 1. Gehring, W. J. (1987) Science 236, 1245-1252. - Nüsslein-Volhard, C., Frohnhöfer, H. G. & Lehmann, R. (1987) Science 238, 1675-1681. - 3. Scott, M. P. & Carrol, B. C. (1987) Cell 51, 689-698. - Herr, W., Sturm, R. A., Clerc, R. G., Corcoran, L. M., Baltimore, D., Sharp, P. A., Ingraham, H. A., Rosenfeld, M. G., Finney, M., Ruvkun, G. & Horvitz, H. R. (1988) Genes Dev. 2, 1513-1516. - 5. Doe, C. Q. & Scott, M. P. (1988) Trends Neurosci. 11, 101-106. - Doe, C. Q., Hiromi, Y., Gehring, W. J. & Goodman, C. S. (1988) Science 239, 170-175. - Blochlinger, K., Bodmer, R., Jack, J., Jan, L. Y. & Jan, Y. N. Nature (London) 333, 629-635. | | | <u> </u> | | 2 | | 3 | ! | | | | | | |-------|------------|---------------------|--------|--------------|-----|--------------------|------------------|------|-------|------------|-----|----------| | | #12° | 7 EFN | ENR | | | OAKIMA. | 125 | PERC | ENT H | IOMOL | OGY | | | | #12 | 6 RLEKEF | | | | KIWFQN (| 121 | | NK-3 | | | | | | 1 | 10 21 | | 28 38 | | 42 y 52 | 61 | | | | | | | NK-1 | PRRARTAFT | YEQLVSLENKER | TTRYLS | VCERLNLALSL | SLT | etgvkiwfonr | RTKWKKQNP | 100 | 54 | 4 4 | 49 | | | NK-3 | KKRSRAAFS | Hagvfelerrfa | QQRYLS | GPERSEMAKSL | RLT | RIGVRIWEGHR | RYKTKRKQI | 54 | 100 | 59 | 66 | | | NK-4 | KRKPRVLFS | QAQVLELECRIR | LKKYLT | GAEREIIAQKL | NLS | atqvkiweqnr | RYKSKRGDI | 44 | 59 | 100 | 59 | | | NK-2 | KRKRRVLFT | KAQTYELERRER | QQRYLS | APEREHLASLI | RLT | PTQVKIWFQNH | RYKTKRAON | 49 | 66 | 59 | 100 | | | | | | | | | | | | | | | | | msh | | TOOLLSLEKEER | | | | | - - - | 57 | 54 | 54 | 54 | [29] | | D11 | MRKPRTIYS | argrootner. | RTQYLA | LPERAELAASL | GLT | QTQVKIWFQNR | RSKYKKMMK | 53 | 51 | 48 | 48 | [22] | | lab | NNSGRTNFT | NKOLTELEKEFH | FNRYLT | RARRIEIANTL | QLN | etovkiweonr | RMKQKKRVK | 51 | 48 | 4 B | 43 | [19, 20] | | zen-1 | LKRSRTAFT | BVQLVRLENEFK | SNMYLY | RTRRIELAGRL | SLC | ergvkiwegnr | RMKFKKDIQ | 57 | 51 | 44 | 39 | [15] | | zen-2 | SKRSRTAFS | SLOLIELEREFH | LNKYLA | RTRRIBISORL | ALT | erovkiweonr | RMKLKKSTN | 49 | 54 | 48 | 41 | [15] | | bcd | PRRTRTTFT | SSQIATIEQHTL | QGRYLT | APRLADLSAKL | ALG | TAQVKIWEKNR | RRRHKIQSD | 46 | 41 | 39 | 43 | [26] | | Dfd | PKRORTAYT | RHOILELEKETH | YNRYLT | RRRRIEIAHTL | VLS | ergikinegnr | RMKWKKDNK | 53 | 48 | 44 | 38 | [32] | | Scr | TKRQRTSYT | RYOTLELEKETH | FNRYLT | RRRRIEIAHAL | CLT | ERQIKIWEQNR | RMKWKKEHK | 49 | 48 | 44 | 41 | [33] | | ftz | SKRTRQTYT | RYQTLELEKEFH | FNRYIT | RRRRIDIANAL | SLS | erqikiweqnr | RMKSKKDRT | 44 | 43 | 4 4 | 38 | [30] | | Antp | RKRGRQTYT | RYOTLELEGER | FNRYLT | RRRRIEIAHAL | CLT | ergikihfonr | RMKWKKENK | 49 | 48 | 43 | 41 | [34,35] | | Ubx | RRRGRQTYT | RYOTLELEKETH | TNHYLT | ARRATEMAHAL | CLT | erqikiwfonr | RMKLKKEIQ | 48 | 46 | 43 | 41 | [36,37] | | abd-A | RRRGRQTYT | REGILELERREH | FNHYLT | RRRRIE LAHAL | CLT | erqikiwyqnr | RMKLKKELR | 49 | 46 | 44 | 41 | [38] | | Abd-B | VRKKRKPYS | KPOTLELEKEFL | FNAYVS | KOKRWELARNI | QLT | erqvkimfonr | RMKNKKNSQ | 46 | 46 | 44 | 46 | [21] | | en | EKRPRTAFS | SEQUARLEREIN | ENRYLT | ERRROQLSSEL | GLN | RAQIKIMFONK | RAKIKKSTG | 46 | 43 | 38 | 34 | [16] | | inv | DKRPRTAFS | GTQLARLKHEFN | ENRYLT | EKRROQLSCEL | GLN | HAQIKIWIQNK | RAKLKKSSG | 49 | 46 | 39 | 39 | [39] | | BSH4 | ORRSRTTFT | ARGLEALERAFS | RTQYPD | VYTREELAQTT | ALT | EARIQUMESNR | RARLRKHSG | 44 | 41 | 33 | 34 | [40] | | BSH9 | ORRSRTTFS | NDQIDALERIFA | RTQYPD | VYTREELAOST | GLT | EARVOVWFSNR | RARLRKQLN | 48 | 44 | 38 | 38 | [40] | | prd | QRRCRTTFS | ASQLORLERAFE | RTQYPD | IYTREELAQRT | NLT | EARIQUMFSNR | RARLRKQHT | 44 | 34 | 30 | 30 | [25] | | ro | QRRQRTTFS | TEOTLELEVERH | RNEYIS | RSRRFELANTL | RLT | RIQIKIWIQNR | RAKDKRIEK | 51 | 51 | 44 | 46 | [8,9] | | cad | KDKYRVVYT | DFORLELEKEYC | TSRYIT | IRRKSELAGTL | SLS | ergykiwegnr | RAKERTSNK | 43 | 41 | 44 | 39 | [41] | | Н2.0 | RSWSRAVFS | NLORECLEIOFO | QQKYIT | KPDRRKLAARL | NLT | DAQVKVWFQNR | RMKWRHTRE | 39 | 46 | 41 | 39 | [42] | | eve | VRRYRTAFT | ROOLCRLEKERY | KENYVS | RPRRCELAAQL | NLP | ESTIKVWFQNR | RMKDKRQRI | 41 | 36 | 34 | 33 | [43,44] | | cut | SKKORVLFS | REOKEALRLAFA | LDPYPN | VCTIEFLANKL | GLA | TRTITNWFHNE | RMRLKQQVP | 31 | 28 | 33 | 31 | [7] | | | 00 • 00 | | • | 0 00 0 | | 0 00000000 | | | | | | - • | FIG. 7. Comparison of the amino acid sequences (single-letter code) of NK-1, NK-2, NK-3, and NK-4 homeoboxes with known *Drosophila* homeoboxes. The positions of three α-helices identified by Otting et al. (31) in a peptide containing the Antp homeobox are indicated by boxes 1-3 above the sequences and the corresponding amino acid residues are shown in boldface type. Oligodeoxynucleotide probes 121-127 correspond to the amino acid sequences shown at the top. Arrowhead above the NK-1 sequence represents the location of introns in NK-1. lab, Dll, and Abd-B genes. Chromosomal clusters of homeobox genes are NK-1, NK-3, and NK-4; lab-Antp; Ubx-Abd-B; en and inv; and BSH-4 and BSH-9 (gsb). Symbols at the bottom of the table represent the following for Drosophila homeoboxes: •, invariant amino acid residues; ·, strongly conserved amino acid residues. The percentage homology of the amino acid sequences of NK-1, NK-2, NK-3, or NK-4 homeoboxes compared with other Drosophila homeoboxes are shown on the right. Values represent percentage of amino acid residues that are identical in each pair of homeoboxes compared; 100% corresponds to 61 amino acid residues. Numbers in brackets are references. - Saint, R., Kalionis, B., Lockett, T. J. & Elizur, A. (1988) Nature (London) 334, 151-154. - 9. Tomlinson, A., Kimmel, B. E. & Rubin, G. M. (1988) Cell 55, 771-784. - Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY). - Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O'Connell, C., Quon, D., Sim, G. K. & Efstratiadis, A. (1978) Cell 15, 687-701. - Wood, W. I., Gitschier, J., Laskey, L. A. & Lawn, R. M. (1985) Proc. Natl. Acad. Sci. USA 82, 1585-1588. - Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467. - Pardue, M. L. (1986) in *Drosophila: A Practical Approach*, ed. Roberts, D. B. (IRL, Oxford), pp. 111-137. - Rushlow, C., Doyle, H., Hoey, T. & Levin, M. (1987) Genes Dev. 1, 1268-1279. - 16. Poole, S. J., Kauvar, L. M., Dress, B. & Kornberg, T. (1985) Cell 40, - Biggin, M. D., Bickel, S., Benson, M., Pirrotta, V. & Tjian, R. (1988) Cell 713-722. - 18. Müller, M., Affolter, M., Leupin, W., Otting, G., Würthrich, K. & Gebring, W. 1 (1988) FMRO 1. 7, 4299-4304 - Gehring, W. J. (1988) EMBO J. 7, 4299-4304. Mldozik, M., Fjose, A. & Gehring, W. J. (1988) EMBO J. 7, 2569-2578. - Hoey, T., Doyle, H. J., Harding, K., Wedeen, C. & Levin, M. (1986) Proc. Natl. Acad. Sci. USA 83, 4809-4813. - DeLorenzi, M., Ali, N., Saari, G., Henry, C., Wilcox, M. & Bienz, M. (1988) EMBO J. 7, 3223-3231. - Cohen, S. M., Brönner, G., Küttner, F., Jürgens, G. & Jäckel, H. (1989) Nature (London) 338, 432-434. - Sunkel, C. E. & Whittle, J. R. S. (1987) Wilhelm Roux's Arch. Dev. Biol. 196, 124-132. - 24. Bridges, P. N. (1941) J. Hered. 32, 299-300. - Frigerio, G., Burri, M., Bopp, D., Baumgartner, S. & Noll, M. (1986) Cell 47, 735-746. - Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S., Frigerio, G., Noll, M. & Nüsslein-Volhard, C. (1988) EMBO J. 7, 1749-1756. - 27. Zink, B. & Paro, R. (1989) Nature (London) 337, 468-471. - Demerec, M., Kaufman, B. P., Fano, U., Sutton, E. & Sansome, E. R. (1942) Carnegie Inst. Washington Yearb. 41, 190-218. - Gehring, W. J. (1987) in Molecular Approaches to Developmental Biology, eds. Firtel, R. A. & Davidson, E. H. (Liss, New York), pp. 115-129. - 30. Laughon, A. & Scott, M. P. (1984) Nature (London) 310, 25-31. - Otting, G., Qian, Y., Müller, M., Affolter, M., Gehring, W. & Wüthrich-K. (1988) EMBO J. 7, 4305-4309. - Regulski, M., McGinnis, N., Chadwick, R. & McGinnis, W. (1987) EMBO J. 6, 767-777. - LeMotte, P. K., Kuroiwa, A., Fessler, L. I. & Gehring, W. J. (1989) *EMBO J.* 8, 219–227. - Schneuwly, S., Kuroiwa, A., Baumgartner, P. & Gehring, W. J. (1986) EMBO J. 5, 733-739. Laughon, A., Boulet, A. M., Bermingham, J. R., Jr., Laymon, R. A. & - Scott, M. P. (1986) *Mol. Cell. Biol.* 6, 4676–4689. 36. Weinzierl, R., Axton, J. M., Ghysen, A. & Akam, M. (1987) *Genes Dev.* - Weinzierl, R., Axton, J. M., Ghysen, A. & Akam, M. (1987) Genes Dev. 1, 386–397. - 37. Kornfeld, K., Saint, R. B., Beachy, P. A., Harte, P. J., Peattie, D. A. & Hogness, D. S. (1989) *Genes Dev.* 3, 243-258. - Akam, M., Dawson, I. & Tear, G. (1988) Development 104, Suppl. 123-133. Coleman, K. G., Poole, S. J., Weir, M. P., Soeller, W. C. & Kornberg. - T. (1987) Genes Dev. 1, 19–28. 40 Raumgartner S. Bopp, D. Burri, M. & Noll, M. (1987) Genes Dev. 1 - Baumgartner, S., Bopp, D., Burri, M. & Noll, M. (1987) Genes Dev. 1. 1247-1267. - 41. Mlodzik, M. & Gehring, W. J. (1987) Cell 48, 465-478. - Barad, M., Jack, T., Chadwick, R. & McGinnis, W. (1988) EMBO J. 7-2151-2161. - 43. Macdonald, P. M., Ingham, P. & Struhl, G. (1986) Cell 47, 721-734 - Frash, M., Hoey, T., Rushlow, C., Doyle, H. & Levin, M. (1986) EMBO J. 6, 749-759.